Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY Paper 3 Theory (Core) 0620/32 February/March 2022 1 hour 15 minutes No additional materials are needed. You must answer on the question paper. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. 1 (a) The electronic structures of five atoms, A, B, C, D and E, are shown. | Α | В | С | D | E | |---|---|---|---|---| | | | | | | Answer the following questions about these electronic structures. Each electronic structure may be used once, more than once or not at all. State which electronic structure, A, B, C, D or E, represents: | (i) an atom in Group V of the Periodic Table | | |--|--| |--|--| | [1] | |-----| |-----| (ii) an atom which contains only two shells of electrons | T 4 1 | |-------| | 111 | | F . 1 | (iii) an atom that forms a stable ion with a charge of 2- (iv) an atom of an element that exists as a monoatomic gas (v) an atom of the metal that is extracted from bauxite. | [1] | |-----| |-----| **(b)** Complete the table to show the number of electrons, neutrons and protons in the uranium atom and rubidium ion shown. | | number of electrons | number of neutrons | number of protons | |---|---------------------|--------------------|-------------------| | ²³⁵ ₉₂ U | 92 | | | | ⁸⁷ ₃₇ Rb ⁺ | | 50 | | [3] [Total: 8] **2 (a)** Biogas is a mixture of gases produced when agricultural waste is broken down in the absence of oxygen. The table compares the percentage by mass of the gases present in two samples of biogas, **X** and **Y**. | gas | biogas X
/% by mass | biogas Y
/% by mass | | | |------------------|-------------------------------|-------------------------------|--|--| | carbon dioxide | 26 | 32 | | | | hydrogen | 1 | 1 | | | | hydrogen sulfide | 0.5 | 0.5 | | | | methane | 67 | 56 | | | | nitrogen | 4 | 9.5 | | | | oxygen | 0.5 | 0.5 | | | | other gases | | 0.5 | | | Answer these questions using only the information in the table. | (i) | Deduce the percentage by mass of the other gases in biogas X . | | |------|--|----| | | | [1 | | (ii) | Describe two major differences in the compositions of biogas X and biogas Y . | | | | 1 | | | | 2 | 2 | **(b)** Complete the diagram to show the electronic structure in a methane molecule. Show only the outer shell electrons. | (c) | Hydrogen | sulfide | burns i | n air | to pro | duce | sulfur | dioxide | and | water. | |-----|----------|---------|---------|-------|--------|------|--------|---------|-----|--------| | | | | | | | | | | | | | (i) Complete the chemical equation for th | nis reaction. | |---|---------------| |---|---------------| | | $\dots \Pi_2 S + \dots U_2 \rightarrow Z \Pi_2 U + Z S U_2$ | [4] | |------|--|-----| | (ii) | Explain how this equation shows that hydrogen sulfide is oxidised. | | | | | |[1] [Total: 7] 3 | This qu | uestion is about metals. | | |---------------|--|----------| | (a) Sta | ate three general physical properties common to most metals. | | | 1. | | | | 2 . | | | | 3 . | | | | | | [3] | | (b) Me | etals are often used in the form of alloys. | | | (i) | State the meaning of the term <i>alloy</i> . | | | | | | | | | [1] | | (ii) | Explain in terms of their properties why alloys are used instead of pure metals. | | | () | | [1] | | (iii) | | | | () | Give one use of stainless steel. | | | | | [1] | | | | [.] | | (c) Pla | ace these metals in order of their reactivity with oxygen. | | | | copper | | | | magnesium
potassium | | | | zinc | | | Pu | t the least reactive metal first. | | | lea | ast reactive — most reactive | | | | | | | | | _
[2] | | | | | | (d) | When 4.8 g of magnesium reacts with excess oxygen, 8.0 g of magnesium oxide is formed. | |-----|--| | | Calculate the minimum mass of magnesium needed to produce 24.0 g of magnesium oxide. | minimum mass = g [1] [Total: 9] | 4 | This qu | estion i | is about | acids, ba | ises a | nd salts. | | | | | |---|--------------------|----------------------|-----------|------------------|---------------|--------------------|----------|--------------------|--------|-----------------| | | (a) So | dium hy | ydroxide | is a base | Э. | | | | | | | | (i) | Name | the pro | ducts for | med v | vhen sodium hyd | droxide | reacts with dilute | nitric | acid. | [2] | | | (ii) | Descr | ibe the e | effect of s | sodiun | n hydroxide on a | name | d indicator. | [2] | | | (iii) | Comp | lete the | word equ | ıation | for the reaction o | of sodic | ım hydroxide with | ammo | nium chloride. | | | sodium
hydroxid | | | nonium
Ioride | \rightarrow | | + | | + | water | | | | | | | | | | | | [2] | | | | scribe l
c sulfat | | repare pi | ure, dı | ry crystals of the | salt ziı | nc sulfate from an | aqueo | ous solution of | [2] | | (c) | The rate of reaction of zinc powder with dilute sulfuric acid is found by measuring the increase in volume of hydrogen gas produced as time increases. | |-----|--| | | Describe the effect, if any, of each of the following on the rate of this reaction. | | | The reaction is carried out with large pieces of zinc instead of zinc powder. | | | All other conditions stay the same. | | | | | | The reaction is carried out using a catalyst. | | | All other conditions stay the same. | | | | | | The reaction is carried out with dilute sulfuric acid of a lower concentration. | | | All other conditions stay the same. | | | [3] | | | [۷] | [Total: 11] - **5** This question is about air. - (a) The pie chart shows the proportions of the main gases in clean, dry air. (i) Name the gases G and H. | gas G | | |--------------|-----| | gas H | | | | [2] | (ii) The graph shows how the volume of a sample of gas **G** changes as temperature increases. The pressure is kept constant. Describe how the volume of gas **G** changes as temperature increases. | [4 | |----| | | | | | | (iii) There is a small percentage of noble gases in the air. The noble gases are unreactive. Explain why the noble gases are unreactive in terms of their electronic structure.[1] (iv) Describe the arrangement and separation of the particles in a gas. arrangement separation[2] | (b) | Two | o of the pollutants in air are oxides of nitrogen and lead compounds. | | |-----|------|---|---------| | | (i) | Give one effect of each of these pollutants on health. | | | | | oxides of nitrogen | | | | | lead compounds |
[2] | | | (ii) | Name two other pollutants present in air. | | | | | State the source of each of these pollutants. | | | | | pollutant 1 | | | | | source of pollutant 1 | | | | | pollutant 2 | | | | | source of pollutant 2 | | | | | | [4] | | | | [Total: | 12] | **6** The table shows some properties of four Group I elements. | element | melting point
/°C | boiling point
/°C | relative hardness | |-----------|----------------------|----------------------|-------------------| | lithium | 181 | 1342 | | | sodium | 98 | | 0.70 | | potassium | 63 | 760 | 0.36 | | rubidium | 39 | 686 | 0.22 | | (a) | (i) | Complete the table by estimating: the boiling point of sodium the relative hardness of lithium. | [2] | |-----|------|---|-----| | | (ii) | Predict the physical state of lithium at 200 °C. | | | | | Give a reason for your answer. | | | | | | | | | | | [2] | | (b) | Pot | assium reacts with water. | | | | | 2K + $2H_2O \rightarrow 2KOH + H_2$ | | | | Des | scribe two observations when potassium reacts with water. | | | | 1 | | | [2] | (c) | Lith | nium is extracted by the electrolysis of molten lithium chloride. | | |-----|-------|--|-------| | | (i) | Name a non-metal used to make the electrodes. | | | | | | [1] | | | (ii) | Give one property, other than the conduction of electricity, that makes this substantiable for use as an electrode. | ance | | | | | . [1] | | (| (iii) | State the products of the electrolysis of molten lithium chloride at: | | | | | the negative electrode (cathode) | | | | | the positive electrode (anode). | | | | | | [2] | | (d) | Lith | nium chloride conducts electricity when molten and when in aqueous solution. | | | | Giv | re two other physical properties of lithium chloride that show it is an ionic compound. | | | | 1 | | | | | 2 | | | | | | | [2] | | | | [Total | : 12] | (a) The structures of four organic compounds, P, Q, R and S, are shown. Answer the following questions about these structures. Each structure may be used once, more than once or not at all. | (i) | State which structure, P , Q , R or S , has a carboxylic acid functional group. | | |-------|---|-----| | /::\ | Chata which atmost was B. O. B. and G. is in the same homeological and a subsequent | [1] | | (ii) | State which structure, P , Q , R or S , is in the same homologous series as ethane. | [1] | | (iii) | State which structure, P , Q , R or S , decolourises aqueous bromine. | | | | | [1] | | (iv) | Deduce the molecular formula of structure ${\bf Q}$ to show the number of carbon, hydrogen oxygen atoms. | and | | | | [1] | | Str | ucture S is produced by cracking petroleum fractions. | | - (b) - Complete the sentence using a word from the list. acids alkenes alcohols nitrogen During cracking, long-chain alkanes are converted to shorter chain alkanes and [1] (ii) Cracking is an example of thermal decomposition. State the meaning of the term thermal decomposition. (c) Link each petroleum fraction on the left to its use on the right. The first one has been done for you. [2] [Total: 9] 8 | This q | uestion is abo | ut chlo | orine and compou | ınds o | f chlorine. | | | |---------------|---|---------|----------------------------|---------------|--------------------------|--------|-----------| | (a) Ch | nlorine is an e | lemen | t in Group VII of t | he Pe | riodic Table. | | | | St | ate the meani | ng of t | he term <i>element</i> . | | | | | | | | | | | | |
 | | | | | | | | |
. [1] | | | | | | | | | | | (b) St | ate one use o | f chlor | rine. | | | | | | | | | | | | |
. [1] | | (c) Cl | nlorine reacts | with p | hosphorus to pro | duce i | ohosphorus(V) ch | loride | | | (i) | | - | tion for this react | | . , , | | | | () | | • | | | \rightarrow 2PC l_5 | | [2] | | (ii) | This reactio | n is ex | | 2 | - 5 | | | | (, | | | g of the term <i>exo</i> a | thermi | ic. | | | | | | oami | | | | |
. [1] | | | | | | | | |
. [·] | | (d) Cl | nlorine reacts | with a | queous sodium b | romid | e. | | | | (i) | Complete th | ne wor | d equation for thi | s read | ction. | | | | | | | |] | | | | | | chlorine | + | sodium
bromide | \rightarrow | | + | | | | | | | | | | | | | | | | | | | [2] | | (ii) | Describe a | test fo | r bromide ions. | | | | | | | test | | | | | |
 | | | observation | s | | | | | | | /::: \ | \ <i>\\</i> // ₀ a.e. la va es | ::- | anisan di selala anno a | | alicens alabaniala Alaba | : |
[2] | | (iii) | | | · | | dium chloride the | | | | | Suggest in | | | | hy there is no rea | | | | | | | | | | |
. [1] | (e) A compound of chlorine has the formula $C_3H_6Cl_2$. Complete the table to calculate the relative molecular mass of $C_3H_6C\mathit{l}_2$. | atom | number of atoms | relative
atomic mass | | |----------|-----------------|-------------------------|-------------| | carbon | 3 | 12 | 3 × 12 = 36 | | hydrogen | | 1 | | | chlorine | | 35.5 | | relative molecular mass = [2] [Total: 12] ## **BLANK PAGE** ## **BLANK PAGE** ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | | | ² He | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 52 | Xe | xenon
131 | 98 | R | radon | | | | |-------|----------|-----------------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|--------|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | = | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ä | bromine
80 | 53 | н | iodine
127 | 85 | Ą | astatine | | | | | | 5 | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ъ | molod – | 116 | | livemorium
- | | | > | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | Ξ | bismuth
209 | | | | | | ≥ | | | 9 | ပ | carbon
12 | 14 | :S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pp | lead
207 | 114 | Fl | flerovium | | | ≡ | | | 2 | В | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | B | cadmium
112 | 80 | Нg | mercury
201 | 112 | S | copernicium
- | | | | | | | | | | | | 59 | D
C | copper
64 | 47 | Ag | silver
108 | 79 | Αu | gold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | z | nickel
59 | 46 | Pd | palladium
106 | 78 | £ | platinum
195 | 110 | Ds | darmstadtium
- | | Gr | | | | | | | | | | 27 | ပိ | cobalt
59 | 45 | 牊 | rhodium
103 | 77 | 'n | iridium
192 | 109 | ¥ | meitnerium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | Η | hassium | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium | | | | | | | pol | ass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≯ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | д | tantalum
181 | 105 | Вb | dubnium
— | | | | | | | ato | rek | | | | 22 | i= | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 꿆 | rutherfordium
— | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 26 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | က | := | lithium
7 | 7 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | & | rubidium
85 | 55 | S | caesium
133 | 87 | ъ́ | francium | | 71 | lutetium
175 | 103 | ۲ | awrencium | ı | |-----------------|---------------------|-----|-----------|--------------|-----| | 02 X | ytterbium
173 | 102 | %
% | nobelium | ı | | 69
Tm | thulium
169 | 101 | Md | mendelevium | ı | | 88
7 | erbium
167 | 100 | Fm | ferminm | ı | | 67
E | holmium
165 | 66 | Es | einsteinium | I | | %
% | dysprosium
163 | 86 | ŭ | californium | ı | | 65
Th | terbium
159 | 26 | Ř | berkelium | ı | | ²⁰ G | gadolinium
157 | 96 | Cm | curium | I | | 63 | europium
152 | 92 | Am | americium | ı | | .Sm | samarium
150 | 94 | Pu | plutonium | ı | | Pm | promethium
- | 93 | ď | neptunium | ı | | 09 Z | neodymium
144 | 92 | \supset | uranium | 238 | | .59
P | praseodymium
141 | 91 | Ра | protactinium | 231 | | 88 G | cerium
140 | 06 | 드 | thorium | 232 | | 57 | lanthanum
139 | 88 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).